Dr. Tim D. Pearce

🕏 tdpearce.uk 🛛 🖂 tim.pearce@warwick.ac.uk

Research: Debris discs • Exoplanets • Planet-disc interactions • Hot exozodis • Dynamics & simulations

	Employment	
2024–present	Stephen Hawking Fellow , University of Warwick, UK Independent research fellowship funded by EPSRC/UKRI, worth £0.5 million over 3 years.	
2023–2024	Prize Fellow , University of Warwick, UK 3-year independent research fellowship. Paused in Spring 2024 to undertake Stephen Hawking fellowship.	
2019–2023	Postdoctoral Researcher , Friedrich-Schiller-Universität, Jena, Germany Full-time research, supervision and teaching in the Theory Group.	
2018–2019	Lead Mathematical Developer , JCT Consultancy Ltd., Lincoln, UK Responsible for all maths and research in an industry-leading traffic-modelling company.	
2016–2018	Weapon Engineer Officer (Submariner) , Royal Navy Underwent extensive management, leadership, communication, administration and engineering training before joining a <i>Vanguard</i> -class submarine as an engineering officer.	
2011	Visiting Researcher , Institute of Astronomy, University of Cambridge, UK Summer job in the X-ray astrophysics group, characterising gas structures in galaxies.	
	Education	
Ti Su	hD in Theoretical Astrophysics , Institute of Astronomy, University of Cambridge, UK tle: <i>Planetary Orbits and Interactions with Debris</i> upervisors: Mark Wyatt & Grant Kennedy warded with no corrections.	
	Phys in Physics and Astronomy (1st class, Hons.) , Durham University, UK asters thesis: <i>Modelling Hypervelocity Stars</i>	
	Student Supervision	
Masters project	S	
2021–2022	Tyson Costa , primary supervisor Title: <i>Projectile stirring of a debris disc by planetesimals scattered by a planet</i> Publication: Costa, Pearce & Krivov (2024)	
2020–2021	Robert Ostermann , primary supervisor Title: <i>Constraints on unseen planets in ISPY debris-disk systems</i> Publication: Pearce, Launhardt, Ostermann et al. (2022)	
Bachelors proje 2022	cts Laura Schulze , primary supervisor Title: Constraining the orbit of Fomalhaut b through mean-motion resonances	
2021	Marc Friebe , primary supervisor Title: <i>Gaps in debris discs - the importance of planet migration</i> Publication: Friebe, Pearce & Löhne (2022)	
Summer project	.5	
2024 (upcoming	g) Noah Sims , primary supervisor Title: <i>Explaining the intermediate debris ring around Fomalhaut</i>	
Masters mini-pr 2022	ojects Marc Friebe & Richard Bernecker , primary supervisor Title: Constraining planets around ϵ Eri from clumps in the debris disc	

Teaching

Friedrich-Schiller-Universität, Jena

2020-2021 **Example classes**, 4th-year *Celestial Mechanics* course Group of 10 students. Official student feedback very positive, placing my teaching quality and engagement well above Physics-department averages in all assessment criteria.

Institute of Astronomy, University of Cambridge

- 2014-2016 **Example classes**, 4th-year *Planetary System Dynamics* course Groups of 6-12 students. Taught for 2 years.
- 2014-2016 **Tutorials**, 3rd-year *Problems in Astrophysics* course Supervised 3 pairs of students.

Formal Collaborations

2022-present	VLTI-NOTT Exozodi Science-Team member (exozodi science-verification for NOTT)
2022-present	ALMA-ARKS Science-Team member (large-programme legacy survey of debris discs)
2022-present	ExoPAG SAG 23 Science-Team member (impact of exozodis on exoplanet imaging)
2020-present	NaCo-ISPY Science-Team member (direct-imaging survey for planets)
2019-2023	FOR 2285 Research-Unit member (DFG-funded, multi-institution collaboration)

Conference Organisation

Scientific Organising Committee (SOC) member

2024	Dust Devils - Debris Disks in the Sonoran Desert, Arizona, USA
2023	ExoPAG SAG 23 symposium, Baltimore, USA

Session chair & Organisation Panel member

2018, 2019 *JCT Traffic Signal Symposium and Exhibition*, Nottingham, UK The primary UK conference on traffic modelling and junction design (2 instances)

Local Organising Committee (LOC) member

2024 (upcoming)	UKI Discs Meeting, Warwick, UK
2022	Debris discs: At Home and Abroad, Jena, Germany
2014	Characterizing Planetary Systems Across the HR Diagram, Cambridge, UK

Session-organisation member

2024 (upcoming) *Europlanet Science Congress (EPSC)*, Berlin, Germany Session: *The impact of planets and flybys on debris disks*

Publicly Available Science Codes

Six programs and numerical tools available on my website and GitHub, including:

- SculptingPlanet Constrain the mass and orbit of an unseen planet sculpting a debris disc.
- GetDebrisStirringLevelInReboundSim Measure the level of debris-disc stirring in a Rebound simulation.
- MinSelfStirringDiscMass Calculate the absolute minimum mass a debris disc requires to self-stir.
- PlanetMassToCarveDebrisGap Calculate the gap carved by a planet embedded in a massive debris disc.

Observations

JWST	
Cycle 3	Finding the great sculptors: a renaissance in planet disk dynamics (48hrs, PI: Millar-Blanchaer)
Cycle 2	Using planets to dynamically weigh a debris disc for the first time (8hrs, PI: Pearce)
Cycle 2	DDT: Establishing the Formation of AF Lep b with NIRCam: The Lowest-Mass Imaged Exoplanet with a Dynamical Mass (5hrs, PI: Franson)
Cycle 1	Using JWST to search for Planetary Sculptors in an ALMA-Selected Sample of Debris Disks (24hrs, PI: Hinkley)
Cycle 1	Searching for low mass planets in debris disk gaps (11hrs, PI: Marino)
VLTI-M	ATISSE
2023	Investigating the variability and morphology of hot exozodiacal dust around κ Tuc (6hrs, PI: Stuber)
2022	Disc or spherical shell? The architecture of hot exozodiacal dust systems observed with MATISSE (9hrs, PI: Kirchschlager)
2021	Mid-infrared emission of six hot exozodis (9hrs, PI: Kirchschlager)
ALMA	
2023	Vertical structure and planetary system dynamics (52 hrs, PI: Hughes)
2016	Double-ring debris disks at 10s of au: probing how far out planets can form (10 hrs, PI: Marino)
2016	What lies beyond Exo-Jupiter planets? (2 hrs, PI: Wyatt)
VLT-SP	HERE
2023	DDT: Enabling breakthrough science with the JWST (3 hrs, PI: Ginski)

DDT: Enabling breakthrough science with the JWST (3 hrs, PI: Ginski)

Other Skills and Experience

Scientific services: Referee for AJ, A&A and the Open Journal of Astrophysics. Also reviewer of observing proposals for several telescopes.

Computing: *Python*, *C*#, *C*++, *LaTeX*, *Linux*, *Windows*. Highly experienced with n-body integrator *Rebound*. Management: Level 5 Diploma in Management and Leadership, Chartered Management Institute, 2016. German language: Intermediate 1 (CEFR level B1), Jena Sprachenzentrum, 2020 (awarded grade 1.7). English language: Fluent (native speaker).

Academic Conferences and Talks

Invited review talks

2022 *(Exo)Planet Diversity, Formation and Evolution*, Berlin, Germany Title: *Debris Discs as Probes of Planetary Systems*

Discussion-session chair

2024	Dust Devils - Debris Disks in the Sonoran Desert, Arizona, USA
	Session: <i>Exozodis</i>
~~~~	

2022 *Debris Discs at Home and Abroad*, Jena, Germany Session: *Hot exozodis* 

### Contributed talks

2024	Dust Devils - Debris Disks in the Sonoran Desert, Arizona, USA
2023	STScl: Planetary Systems and the Origins of Life in the Era of JWST, Baltimore, USA
2023	PERC International Symposium on Dust & Parent Bodies 2023, Tokyo, Japan
2022	Debris Discs at Home and Abroad, Jena, Germany
2022	In the Spirit of Lyot, Leiden, Netherlands
2022	PERC International Symposium on Dust & Parent Bodies 2022, Japan (Virtual)
2021	European Astronomical Society Annual Meeting, Leiden, Netherlands (Virtual)
2020	Five years after HL Tau: a new era in planet formation, Chile (Virtual)

(Outside academia April 2016 - December 2019)

2015 Exoplanet Community Meeting, Warwick, UK

### Seminars

- 2023 NOTT exozodi workshop, Leuven, Belgium
- 2023 STScl High-Contrast Imaging Seminar Series, Baltimore, USA
- 2023 Planet- & Star-Formation Seminar Series, Heidelberg, Germany
- 2022 Cambridge Exoplanet Seminar Series, Cambridge, UK
- 2022 Astronomy Group Seminar Series, Warwick, UK
- 2021 TLS Institute's Colloquium, Tautenburg, Germany (Virtual)
- 2021 Mark Wyatt's Group Seminar Series, Cambridge, UK (Virtual)
- 2020 2023 FOR 2285 Research Unit Seminar Series, various locations, Germany (7 talks over 3.5 years)
- 2020 2023 AIU Seminar Series, Jena, Germany (4 talks over 3.5 years)

(Outside academia April 2016 - December 2019)

- 2016 Astrophysics Seminar Series, Exeter, UK
- 2014 Institute of Astronomy Seminar Series, Cambridge, UK

#### Posters

- 2022 Debris Discs at Home and Abroad, Jena, Germany
- 2021 Distorted Astrophysical Discs, Cambridge, UK (Virtual)
- 2021 Sagan Summer Workshop Circumstellar Disks and Young Planets, USA (Virtual)
- 2021 Towards the Comprehensive Characterization of Exoplanets, STScl, USA (Virtual)

(Outside academia April 2016 - December 2019)

- 2015 In the Spirit of Lyot, Montreal, Canada
- 2014 Characterizing Planetary Systems Across the HR Diagram, Cambridge, UK
- 2013 Protostars and Planets VI, Heidelberg, Germany

### Invited review chapters

• Debris disks around main-sequence stars Pearce, 2024, to be published in *Encyclopedia of Astrophysics*, 1st Edition, Elsevier (arXiv: 2403.11804)

### First author

- The effect of sculpting planets on debris-disc inner edges Pearce, Krivov, Sefilian et al., 2024, MNRAS, 527, 3876
- Hot exozodis: cometary supply without trapping is unlikely to be the mechanism Pearce, Kirchschlager, Rouillé et al., 2022, MNRAS, 517, 1436
- Planet populations inferred from debris discs: insights from 178 debris systems in the ISPY, LEECH and LIStEN planet-hunting surveys Pearce, Launhardt, Ostermann et al., 2022, A&A, 659, A135
- Fomalhaut b could be massive and sculpting the narrow, eccentric debris disc, if in mean-motion resonance with it Pearce, Beust, Faramaz et al., 2021, MNRAS, 503, 4767
- Gas trapping of hot dust around main-sequence stars Pearce, Krivov & Booth, 2020, MNRAS, 498, 2798

(Outside academia April 2016 - December 2019)

- Double-ringed debris discs could be the work of eccentric planets: explaining the strange morphology of HD 107146
  Pearce & Wyatt, 2015, MNRAS, 453, 3329
- Constraining the orbits of sub-stellar companions imaged over short orbital arcs Pearce, Wyatt & Kennedy, 2015, MNRAS, 448, 3679
- Dynamical evolution of an eccentric planet and a less massive debris disc Pearce & Wyatt, 2014, MNRAS, 443, 2541
- Imaged substellar companions: not as eccentric as they appear? The effect of an unseen inner mass on derived orbits
  Derived Viewerky 2014, MNDAS, 427, 2696

Pearce, Wyatt & Kennedy, 2014, MNRAS, 437, 2686

### Second author

- Increasing planet-stirring efficiency of debris disks by "projectile stirring" or "resonant stirring" Costa, Pearce & Krivov, 2024, MNRAS, 527, 7317
- The clumpy structure of  $\epsilon$  Eridani's debris disc revisited by ALMA Booth, Pearce, Krivov et al., 2023, MNRAS, 521, 6180
- ISPY-NACO Imaging Survey for Planets around Young stars. The demographics of forming planets embedded in protoplanetary disks Cugno, Pearce, Launhardt et al., 2023, A&A, 669, A145
- Gap carving by a migrating planet embedded in a massive debris disc Friebe, Pearce & Löhne, 2022, MNRAS, 512, 4441

### Other co-author

- How much large dust could be present in hot exozodiacal dust systems? Stuber, Kirchschlager, Pearce et al., 2023, A&A, 678, A121
- Debris-disc mass strongly changes the outcomes of interactions with inclined planets Poblete, Löhne, Pearce et al., 2023, MNRAS, 526, 2017
- Astrometric Accelerations as Dynamical Beacons: A Giant Planet Imaged Inside the Debris Disk of the Young Star AF Lep Franson, Bowler, Zhou, Pearce et al., 2023, ApJL, 950, L19

- High resolution ALMA and HST images of q1 Eri: an asymmetric debris disc with an eccentric Jupiter Lovell, Marino, Wyatt et al., 2021, MNRAS, 506, 1978
- LIStEN: L' band Imaging Survey for Exoplanets in the North Musso Barcucci, Launhardt, Müller et al., 2021, A&A, 645, A88
- Resolving the outer ring of HD 38206 using ALMA and constraining limits on planets in the system Booth, Schulz, Krivov et al., 2021, MNRAS, 500, 1604

(Outside academia April 2016 - December 2019)

• An M-dwarf star in the transition disk of Herbig HD 142527 Lacour, Biller, Cheetham et al., 2016, A&A, 590, A90